Degenerate Preconditioned Proximal Point Algorithms

نویسندگان

چکیده

In this paper we describe a systematic procedure to analyze the convergence of degenerate preconditioned proximal point algorithms. We establish weak results under mild assumptions that can be easily employed in context splitting methods for monotone inclusion and convex minimization problems. Moreover, show degeneracy preconditioner allows reduction variables involved iteration updates. strength proposed framework algorithms, providing new simplified proofs highlighting link between existing schemes, such as Chambolle-Pock, Forward Douglas-Rachford Peaceman-Rachford, study from perspective. The devise flexible schemes provides ways generalize case sum many terms. As an example, present sequential generalization along with numerical experiments demonstrate its interest nonsmooth optimization.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Four parameter proximal point algorithms

Several strong convergence results involving two distinct four parameter proximal point algorithms are proved under different sets of assumptions on these parameters and the general condition that the error sequence converges to zero in norm. Thus our results address the two important problems related to the proximal point algorithm − one being of strong convergence (instead of weak convergence...

متن کامل

Inexact and accelerated proximal point algorithms

We present inexact accelerated proximal point algorithms for minimizing a proper lower semicontinuous and convex function. We carry on a convergence analysis under different types of errors in the evaluation of the proximity operator, and we provide corresponding convergence rates for the objective function values. The proof relies on a generalization of the strategy proposed in [14] for genera...

متن کامل

Generalized Proximal Point Algorithms for Quasiconvex Programming

In this paper, we proposed algorithms interior proximal methods based on entropylike distance for the minimization of the quasiconvex function subjected to nonnegativity constraints. Under the assumptions that the objective function is bounded below and continuously differentiable, we established the well definedness of the sequence generated by the algorithms and obtained two important converg...

متن کامل

Common Zero Points of Two Finite Families of Maximal Monotone Operators via Proximal Point Algorithms

In this work, it is presented iterative schemes for achieving to common points of the solutions set of the system of generalized mixed equilibrium problems, solutions set of the variational inequality for an inverse-strongly monotone operator, common fixed points set of two infinite sequences of relatively nonexpansive mappings and common zero points set of two finite sequences of maximal monot...

متن کامل

Error bounds for proximal point subproblems and associated inexact proximal point algorithms

We study various error measures for approximate solution of proximal point regularizations of the variational inequality problem, and of the closely related problem of finding a zero of a maximal monotone operator. A new merit function is proposed for proximal point subproblems associated with the latter. This merit function is based on Burachik-Iusem-Svaiter’s concept of ε-enlargement of a max...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Siam Journal on Optimization

سال: 2022

ISSN: ['1095-7189', '1052-6234']

DOI: https://doi.org/10.1137/21m1448112